<nav id="g8ygq"></nav>
  • <nav id="g8ygq"></nav>
    <menu id="g8ygq"></menu>
  • 收藏本站
    收藏 | 投稿 | 手机打开
    二维码
    手机客户端打开本文

    Prognostics based on the generalized diffusion process with parameters updated by a sequential Bayesian method

    Hong PEI  Xiaosheng SI  Changhua HU  Jianxun ZHANG  Dangbo DU  Zhenan PANG  Shengfei ZHANG  
    【摘要】:The realistic degradation process for the engineering equipment is generally stochastic and complicated owing to the uncertain operational condition and multiple functional loading, exhibiting the absolute nonlinear distinction. Such a nonlinear degradation process is widely modeled as a generalized diffusion process. When utilizing the generalized diffusion process-based model, certain model parameters are considered as the random variables to characterize the unit-to-unit discrepancies. Hence, the estimation of these kinds of parameters usually resorts to the Bayesian method. However, owing to the complex pattern of the model parameters in the generalized diffusion process, computing the Bayesian updated parameters requires plenty of repeated calculation and integration operations once the new degradation monitoring information is available. This will inevitably lower the computing efficiency and real-time performance. Toward this end, this paper presents an adaptive prognostic method based on the generalized diffusion process to determine the remaining useful life (RUL) of degraded equipment. First, a generalized diffusion process-based degradation modeling framework is constructed to describe the health performance of stochastic degraded equipment under complex conditions. Then, we utilize the maximum likelihood estimation (MLE) method to estimate the initial model parameters by analyzing the historical degradation information. Furthermore, a sequential Bayesian method is proposed to recursively update the stochastic model parameters in the generalized diffusion process for particular equipment in service. Unlike the existing studies utilizing the Bayesian method,the primary contrast in the presented method lies in that there is no need to implement the calculation process with complicated integration repeatedly utilizing the whole degradation information obtained before the current time. Particularly, the current measured information is incorporated into the estimates of the stochastic parameters in the previous time to determine the corresponding posterior estimates at the current time. This can avoid repeated calculation and raise the efficiency to a certain extent. Thereafter, the RUL distribution is updated adaptively by incorporating the acquired posterior estimates. Finally, we provide two practical case studies associated with the gyroscope and 2017-T4 aluminum alloy to demonstrate the efficiency and advantage of the proposed sequential Bayesian method. The experimental results exhibit that the proposed method can increase the RUL prediction accuracy compared with the existing methods in the literature.
    下载App查看全文

    (如何获取全文? 欢迎:购买知网充值卡、在线充值、在线咨询)

    CAJViewer阅读器支持CAJ、PDF文件格式,AdobeReader仅支持PDF格式


    知网文化
    【相似文献】
    中国期刊全文数据库 前19条
    1 ZHAO Rudong;SHI Xianming;WANG Qian;SU Xiaobo;SONG Xing;;Bayesian inference for ammunition demand based on Gompertz distribution[J];Journal of Systems Engineering and Electronics;2020年03期
    2 Long Chen;Linqing Wang;Zhongyang Han;Jun Zhao;Wei Wang;;Variational Inference Based Kernel Dynamic Bayesian Networks for Construction of Prediction Intervals for Industrial Time Series With Incomplete Input[J];IEEE/CAA Journal of Automatica Sinica;2020年05期
    3 Bing Liu;Shishi Feng;Xuan Guo;Jing Zhang;;Bayesian Analysis of Complex Mutations in HBV, HCV,and HIV Studies[J];Big Data Mining and Analytics;2019年03期
    4 赵泽;;Comparison Between χ~2 and Bayesian Statistics with Considering the Redshift Dependence of Stretch and Color from JLA Data[J];Communications in Theoretical Physics;2019年09期
    5 Qiang GUAN;Yin-cai TANG;;Bayesian Planning of Optimal Step-stress Accelerated Life Test for Log-location-scale Distributions[J];Acta Mathematicae Applicatae Sinica;2018年01期
    6 黄开启;古莹奎;梁玲强;;Reliability Risk Evaluation Method for Complex Mechanical System Based on Optimal Bayesian Network[J];Journal of Donghua University(English Edition);2016年02期
    7 王囡;刘琦;;基于异常值检验的Bayesian方法验前信息可信度计算[J];科学技术与工程;2012年31期
    8 崔俊峰;杜理明;;随机加速寿命试验的Bayesian分析[J];淮阴工学院学报;2009年03期
    9 ;Study of testability measurement method for equipment based on Bayesian network model[J];Journal of Systems Engineering and Electronics;2009年05期
    10 张剑;叶见曙;赵新铭;;Dynamic Bayesian estimation of displacement parameters of continuous curve box based on Novozhilov theory[J];Applied Mathematics and Mechanics(English Edition);2007年01期
    11 ;The Study of Sample Information in Bayesian Analysis and Its Application[J];Journal of Systems Science and Systems Engineering;2000年04期
    12 周马生;李毅谦;向志海;G. Swoboda;岑章志;;A Modified Extended Bayesian Method for Parameter Estimation[J];Tsinghua Science and Technology;2007年05期
    13 SHEN Junshan;LI Zhaonan;YU Hanjun;FANG Xiangzhong;;Semiparametric Bayesian Inference for Accelerated Failure Time Models with Errors-in-Covariates and Doubly Censored Data[J];Journal of Systems Science & Complexity;2017年05期
    14 Huazhen Fang;Ning Tian;Yebin Wang;Meng Chu Zhou;Mulugeta A. Haile;;Nonlinear Bayesian Estimation:From Kalman Filtering to a Broader Horizon[J];IEEE/CAA Journal of Automatica Sinica;2018年02期
    15 Wei-hua ZHAO;Ri-quan ZHANG;Ya-zhao L;Ji-cai LIU;;Bayesian Regularized Regression Based on Composite Quantile Method[J];Acta Mathematicae Applicatae Sinica;2016年02期
    16 黄金波;孔德景;崔利荣;;Bayesian Reliability Assessment and Degradation Modeling with Calibrations and Random Failure Threshold[J];Journal of Shanghai Jiaotong University(Science);2016年04期
    17 Xiu-yun PENG;Zai-zai YAN;;Bayesian Estimation for Generalized Exponential Distribution Based on Progressive Type-I Interval Censoring[J];Acta Mathematicae Applicatae Sinica(English Series);2013年02期
    18 张金;涂俊翔;陈卓宁;严晓光;;Quasi-Bayesian software reliability model with small samples[J];Journal of Shanghai University(English Edition);2009年04期
    19 Zhenlin Wang;Bowei Wu;Krishna Garikipati;Xun Huan;;A perspective on regression and Bayesian approaches for system identification of pattern formation dynamics[J];Theoretical & Applied Mechanics Letters;2020年03期
    中国重要会议论文全文数据库 前20条
    1 Yijun Pan;Zeyu Zheng;;Bayesian online change point detection method for process monitoring[A];第32届中国控制与决策会议论文集(1)[C];2020年
    2 Yuyang Cai;Xiaotong Zhao;Enbin Song;;Minimax Joint Detection and Estimation with the Bayesian Cost[A];第三十九届中国控制会议论文集(3)[C];2020年
    3 Yuxian Zhang;Shuqing Yan;Xiaoyi Qian;Mengru Zhao;;A fault diagnosis based on LSSVM and Bayesian probability for wind turbines[A];第三十九届中国控制会议论文集(4)[C];2020年
    4 Lan YU;Yao MENG;Song FENG;;Estimating Red Noise Spectrum of Time Series Using Bayesian Inference[A];第三十九届中国控制会议论文集(3)[C];2020年
    5 Wenqiang Guo;Zhengwei Wen;Zhigao Guo;Cheng Xu;Qinkun Xiao;Lingling Mao;;Varying Balancing Transfer Learning for BN Parameter Estimation[A];第32届中国控制与决策会议论文集(5)[C];2020年
    6 Menglong CAO;Dongyuan YOU;;An Application of Optimized Bayesian Estimation Data Fusion Algorithm in Tire Pressure Monitoring System[A];第30届中国控制与决策会议论文集(5)[C];2018年
    7 ;Expected Bayesian Credible Limit of Reliability Parameters in the Case of Zero-Failure Data for Exponential Distribution[A];Proceedings of the 2011 Chinese Control and Decision Conference(CCDC)[C];2011年
    8 ;Flexibility Discrete Dynamic Bayesian Networks modeling and Inference algorithm[A];第24届中国控制与决策会议论文集[C];2012年
    9 Jing Wang;Ping Yu;Zhen-Tao Liu;;Optimal Rescue Path for Maritime Air Crash Based on Probability Density Distribution and Bayesian Formula[A];第37届中国控制会议论文集(B)[C];2018年
    10 ;A Bayesian Framework for Target Tracking in Sensor Networks[A];第二十六届中国控制会议论文集[C];2007年
    11 ;Research on Target Assignment Method Based on Discrete Fuzzy Dynamic Bayesian Network[A];第13届中国系统仿真技术及其应用学术年会论文集[C];2011年
    12 李本崇;杨有龙;;VC dimension induced by discrete Markov networks and Bayesian networks[A];第十届海峡两岸统计与概率研讨会摘要集[C];2016年
    13 ;Reward-Modulated Synaptic Plasticity for Simple Bayesian Decision[A];Proceedings of the 2011 Chinese Control and Decision Conference(CCDC)[C];2011年
    14 Sanjay Chaudhuri;;A Two-step Metropolis Hastings Method for Bayesian Empirical Likelihood Computation[A];第十届海峡两岸统计与概率研讨会摘要集[C];2016年
    15 魏立力;;基于指数分布寿命特征检验的Bayesian停止判别法则[A];2003中国现场统计研究会第十一届学术年会论文集(上)[C];2003年
    16 ;Social Learning in Multi-True-State Networks[A];中国自动化学会控制理论专业委员会D卷[C];2011年
    17 明志茂;张云安;陶俊勇;易晓山;陈循;;基于新的Dirichlet先验分布的Weibull寿命型产品可靠性增长Bayesian分析[A];2009年全国机械可靠性技术学术交流会暨第四届可靠性工程分会成立大会论文集[C];2009年
    18 ;Dynamic Bayesian network model for inflation risk warning[A];2009中国控制与决策会议论文集(3)[C];2009年
    19 蒋青嬗;;门限空间随机前沿模型估计方法研究[A];21世纪数量经济学(第18卷)[C];2017年
    20 汪小帆;;The Wisdom of Crowds:Social Learning in complex Networks[A];第七届全国网络科学论坛论文集[C];2011年
    中国博士学位论文全文数据库 前4条
    1 Kamran Abbas;Frechet分布的客观贝叶斯分析与可靠性推断[D];华东师范大学;2013年
    2 Sheferaw Yehuala Belay;早期临床试验中的若干贝叶斯自适应设计[D];华东师范大学;2021年
    3 Muzahem Mohammed Yahya Al-Hashimi;[D];华中科技大学;2013年
    4 邓海松;基于稀疏先验的计算机试验元建模方法研究[D];南京理工大学;2011年
    中国硕士学位论文全文数据库 前15条
    1 陈亮;基于高斯过程和条件神经网络的多任务Bayesian优化研究[D];深圳大学;2019年
    2 陈云起;基于序贯Monte Carlo方法与Rao-Blackwellisation的Bayesian滤波[D];哈尔滨工业大学;2017年
    3 Mohamed elmoctar Neine;[D];华中科技大学;2009年
    4 戴慧;利用Bayesian可靠性分析模型和Bayesian状态空间模型评估住房抵押贷款违约风险[D];吉林大学;2015年
    5 滕德雄;基于Bayesian的空间多层线性回归模型的参数估计及其应用[D];新疆大学;2016年
    6 康婷;基于Bayesian的空间变系数自回归模型的参数估计及其应用[D];新疆大学;2015年
    7 刘妙妙;基于高斯过程先验的Gibbs分类的PAC-Bayesian界[D];西南交通大学;2014年
    8 张凡;多维随机模型结构性变点检测及Bayesian图模型研究[D];广州大学;2007年
    9 陈延礼;非参数Bayesian中的右中立过程[D];西南交通大学;2008年
    10 赵文铀;两类非参数空间误差模型的Bayesian-INLA估计[D];新疆大学;2020年
    11 周晓东;[D];上海师范大学;2005年
    12 吕佳琦;基于证据最大化的正则参数估计方法[D];哈尔滨师范大学;2021年
    13 叶思懋;融合先验的贝叶斯网络结构学习及其在智能决策中的应用[D];西北工业大学;2018年
    14 岳金凤;贝叶斯方法在保险精算中的应用综述[D];吉林大学;2009年
    15 张丹;多响应线性模型最优设计的迭代算法及其实现[D];上海师范大学;2008年
     快捷付款方式  订购知网充值卡  订购热线  帮助中心
    • 400-819-9993
    • 010-62982499
    • 010-62783978


    官方彩票